test to see if ai-generated fuzzy search is better
This commit is contained in:
@@ -65,59 +65,104 @@ public class BonusManager {
|
||||
|
||||
public static int fuzzyMatchScore(String query, String title) {
|
||||
if (query == null || title == null || query.isEmpty() || title.isEmpty()) {
|
||||
return query == null ? (title == null ? 100 : 0) : (title.isEmpty() ? 100 : 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Normalize both strings: remove diacritics, lowercase, remove special chars
|
||||
String normalizedQuery = normalize(query);
|
||||
String normalizedTitle = normalize(title);
|
||||
|
||||
// Exact match after normalization
|
||||
if (normalizedTitle.equals(normalizedQuery)) {
|
||||
// ===== TIER 1: EXACT WORD MATCH (highest priority) =====
|
||||
if (isExactWordMatch(normalizedTitle, normalizedQuery)) {
|
||||
return 100;
|
||||
}
|
||||
|
||||
// Substring match (query is contained in title)
|
||||
if (normalizedTitle.contains(normalizedQuery)) {
|
||||
return 95; // Very high score but slightly less than exact
|
||||
// ===== TIER 2: WORD-BOUNDARY SUBSTRING =====
|
||||
if (isWordBoundaryMatch(normalizedTitle, normalizedQuery)) {
|
||||
return 95;
|
||||
}
|
||||
|
||||
// ===== TIER 3: PREFIX MATCH =====
|
||||
if (isPrefixMatch(normalizedTitle, normalizedQuery)) {
|
||||
return 85;
|
||||
}
|
||||
|
||||
// ===== TIER 4: LEVENSHTEIN (typo tolerance) =====
|
||||
int qlen = normalizedQuery.length();
|
||||
int tlen = normalizedTitle.length();
|
||||
|
||||
// Query longer than title - impossible match
|
||||
if (qlen > tlen) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Find the best matching substring using Levenshtein distance
|
||||
int bestDistance = Integer.MAX_VALUE;
|
||||
int bestPosition = -1;
|
||||
|
||||
for (int i = 0; i <= tlen - qlen; i++) {
|
||||
String sub = normalizedTitle.substring(i, i + qlen);
|
||||
int dist = LevenshteinDistance.calculate(normalizedQuery, sub);
|
||||
|
||||
int dist = levenshteinDistance(normalizedQuery, sub);
|
||||
if (dist < bestDistance) {
|
||||
bestDistance = dist;
|
||||
bestPosition = i;
|
||||
|
||||
if (dist == 0) break; // Perfect match found, can't do better
|
||||
if (dist == 0) break;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate score: 100% at distance 0, scales down with distance
|
||||
// Normalize by query length for consistency
|
||||
double similarity = 1.0 - (bestDistance / (double) qlen);
|
||||
|
||||
// Apply position bonus: matches at the start are better
|
||||
if (bestPosition == 0) {
|
||||
similarity *= 1.1; // 10% boost for start matches
|
||||
// Allow up to 2 edits (typo tolerance)
|
||||
if (bestDistance <= 2) {
|
||||
// Distance 0 = 80, Distance 1 = 70, Distance 2 = 60
|
||||
int score = 80 - (bestDistance * 10);
|
||||
return Math.max(0, score);
|
||||
}
|
||||
|
||||
// Clamp to 0-100
|
||||
int score = (int) (similarity * 100.0);
|
||||
return Math.max(0, Math.min(100, score));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Exact word match: query must be surrounded by word boundaries or string edges
|
||||
* "LOR" matches "L OR" or "LOR coffee" but NOT "LOREAL"
|
||||
*/
|
||||
private static boolean isExactWordMatch(String title, String query) {
|
||||
String[] words = title.split("\\s+");
|
||||
for (String word : words) {
|
||||
if (word.equals(query)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Word boundary match: query matches at word start/end
|
||||
* "LOR" matches in "L'OR" (after special char removed)
|
||||
* "REAL" matches in "LOREAL" as word boundary? No, stays in Tier 4
|
||||
*/
|
||||
private static boolean isWordBoundaryMatch(String title, String query) {
|
||||
// Check if query appears after space or at start
|
||||
if (title.startsWith(query + " ")) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (title.contains(" " + query)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Check if query ends at word boundary
|
||||
if (title.endsWith(" " + query)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Prefix match: query is the start of any word
|
||||
* "CAF" matches in "CAFFE" or "CAFE LATTE"
|
||||
*/
|
||||
private static boolean isPrefixMatch(String title, String query) {
|
||||
for (String word : title.split("\\s+")) {
|
||||
if (word.startsWith(query) && word.length() > query.length()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private static String normalize(String input) {
|
||||
@@ -125,14 +170,12 @@ public class BonusManager {
|
||||
return input;
|
||||
}
|
||||
|
||||
// Unicode decomposition: separate base chars from diacritics
|
||||
// Remove diacritics
|
||||
String decomposed = Normalizer.normalize(input, Normalizer.Form.NFD);
|
||||
|
||||
// Remove all combining diacritical marks
|
||||
String withoutDiacritics = decomposed
|
||||
.replaceAll("\\p{InCombiningDiacriticalMarks}+", "");
|
||||
|
||||
// Lowercase and remove special characters (keep alphanumeric + spaces)
|
||||
// Lowercase, remove special chars, normalize spaces
|
||||
String cleaned = withoutDiacritics
|
||||
.toLowerCase()
|
||||
.replaceAll("[^a-z0-9\\s]", "")
|
||||
@@ -141,4 +184,32 @@ public class BonusManager {
|
||||
|
||||
return cleaned;
|
||||
}
|
||||
|
||||
private static int levenshteinDistance(String query, String title) {
|
||||
int qlen = query.length();
|
||||
int tlen = title.length();
|
||||
|
||||
if (qlen == 0) return tlen;
|
||||
if (tlen == 0) return qlen;
|
||||
|
||||
int[][] dp = new int[qlen + 1][tlen + 1];
|
||||
|
||||
for (int i = 0; i <= qlen; i++) dp[i][0] = i;
|
||||
for (int j = 0; j <= tlen; j++) dp[0][j] = j;
|
||||
|
||||
for (int i = 1; i <= qlen; i++) {
|
||||
for (int j = 1; j <= tlen; j++) {
|
||||
if (query.charAt(i - 1) == title.charAt(j - 1)) {
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
dp[i][j] = 1 + Math.min(
|
||||
Math.min(dp[i - 1][j - 1], dp[i - 1][j]),
|
||||
dp[i][j - 1]
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return dp[qlen][tlen];
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user