test to see if ai-generated fuzzy search is better
This commit is contained in:
@@ -3,6 +3,7 @@ package nl.herpiederpiee.appie_scraper;
|
||||
import com.microsoft.playwright.*;
|
||||
import xyz.nextn.levenshteindistance.LevenshteinDistance;
|
||||
|
||||
import java.text.Normalizer;
|
||||
import java.util.ArrayList;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
@@ -63,25 +64,81 @@ public class BonusManager {
|
||||
}
|
||||
|
||||
public static int fuzzyMatchScore(String query, String title) {
|
||||
query = query.toLowerCase();
|
||||
title = title.toLowerCase();
|
||||
|
||||
if (title.contains(query)) {
|
||||
return 100; // perfect match
|
||||
if (query == null || title == null || query.isEmpty() || title.isEmpty()) {
|
||||
return query == null ? (title == null ? 100 : 0) : (title.isEmpty() ? 100 : 0);
|
||||
}
|
||||
|
||||
int best = Integer.MAX_VALUE;
|
||||
// Normalize both strings: remove diacritics, lowercase, remove special chars
|
||||
String normalizedQuery = normalize(query);
|
||||
String normalizedTitle = normalize(title);
|
||||
|
||||
int qlen = query.length();
|
||||
int tlen = title.length();
|
||||
// Exact match after normalization
|
||||
if (normalizedTitle.equals(normalizedQuery)) {
|
||||
return 100;
|
||||
}
|
||||
|
||||
// Substring match (query is contained in title)
|
||||
if (normalizedTitle.contains(normalizedQuery)) {
|
||||
return 95; // Very high score but slightly less than exact
|
||||
}
|
||||
|
||||
int qlen = normalizedQuery.length();
|
||||
int tlen = normalizedTitle.length();
|
||||
|
||||
// Query longer than title - impossible match
|
||||
if (qlen > tlen) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Find the best matching substring using Levenshtein distance
|
||||
int bestDistance = Integer.MAX_VALUE;
|
||||
int bestPosition = -1;
|
||||
|
||||
for (int i = 0; i <= tlen - qlen; i++) {
|
||||
String sub = title.substring(i, i + qlen);
|
||||
int dist = LevenshteinDistance.calculate(query, sub);
|
||||
if (dist < best) best = dist;
|
||||
String sub = normalizedTitle.substring(i, i + qlen);
|
||||
int dist = LevenshteinDistance.calculate(normalizedQuery, sub);
|
||||
|
||||
if (dist < bestDistance) {
|
||||
bestDistance = dist;
|
||||
bestPosition = i;
|
||||
|
||||
if (dist == 0) break; // Perfect match found, can't do better
|
||||
}
|
||||
}
|
||||
|
||||
int score = (int)(100.0 * (1.0 - (best / (double) qlen))); // fancy manier om t naar een % match om te zetten
|
||||
// Calculate score: 100% at distance 0, scales down with distance
|
||||
// Normalize by query length for consistency
|
||||
double similarity = 1.0 - (bestDistance / (double) qlen);
|
||||
|
||||
// Apply position bonus: matches at the start are better
|
||||
if (bestPosition == 0) {
|
||||
similarity *= 1.1; // 10% boost for start matches
|
||||
}
|
||||
|
||||
// Clamp to 0-100
|
||||
int score = (int) (similarity * 100.0);
|
||||
return Math.max(0, Math.min(100, score));
|
||||
}
|
||||
|
||||
private static String normalize(String input) {
|
||||
if (input == null || input.isEmpty()) {
|
||||
return input;
|
||||
}
|
||||
|
||||
// Unicode decomposition: separate base chars from diacritics
|
||||
String decomposed = Normalizer.normalize(input, Normalizer.Form.NFD);
|
||||
|
||||
// Remove all combining diacritical marks
|
||||
String withoutDiacritics = decomposed
|
||||
.replaceAll("\\p{InCombiningDiacriticalMarks}+", "");
|
||||
|
||||
// Lowercase and remove special characters (keep alphanumeric + spaces)
|
||||
String cleaned = withoutDiacritics
|
||||
.toLowerCase()
|
||||
.replaceAll("[^a-z0-9\\s]", "")
|
||||
.replaceAll("\\s+", " ")
|
||||
.trim();
|
||||
|
||||
return cleaned;
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user